Big Brains

Why Can’t Scientists Agree On The Age Of The Universe? with Wendy Freedman

Episode Summary

How old is the universe—and how fast is it expanding? These are part of one of the biggest—and most contested—questions in science, and the answers could change our understanding of physics. In this episode, we talk with renowned UChicago astronomer Wendy Freedman, who’s spent decades trying to solve these very questions. There are two ways to measure how fast the universe is expanding, also known as the Hubble constant; Freedman has done groundbreaking research to calculate this number using stars, but the problem is, her numbers don’t match up with scientists using a different method. And the implications of that difference are massive, because it could indicate that our Standard Model of physics could be broken. Yet Freedman’s latest research, using the powerful James Webb Space Telescope, might finally give us a clearer answer. In our conversation, we explore the age of the universe, the mysteries of dark matter and what all this could mean for the future of physics—and maybe even the discovery of life beyond Earth.

Episode Notes

How old is the universe—and how fast is it expanding? These are part of one of the biggest—and most contested—questions in science, and the answers could change our understanding of physics.

In this episode, we talk with renowned UChicago astronomer Wendy Freedman, who’s spent decades trying to solve these very questions. There are two ways to measure how fast the universe is expanding, also known as the Hubble constant; Freedman has done groundbreaking research to calculate this number using stars, but the problem is, her numbers don’t match up with scientists using a different method. And the implications of that difference are massive, because it could indicate that our Standard Model of physics could be broken.

Yet Freedman’s latest research, using the powerful James Webb Space Telescope, might finally give us a clearer answer. In our conversation, we explore the age of the universe, the mysteries of dark matter and what all this could mean for the future of physics—and maybe even the discovery of life beyond Earth.